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We study the rheological properties of colloidal microphases in two dimensions simulating a model of
colloidal particles with competing interactions. Due to the competition between short-range attraction and
long-range repulsion, as a function of the density the model exhibits a variety of microphases such as clusters,
stripes, or crystals with bubbles. We prepare the system in a confined microphase employing Monte Carlo
simulations and then shear the resulting configurations by applying a drag force profile. We integrate numeri-
cally the equation of motion for the particles and analyze the dynamics as a function of the density and the
applied strain rate. We measure the stress-strain curves and characterize the yielding of the colloidal mi-
crophases. The results depend on the type of microphase. �i� Clusters are easily sheared along layers and the
relative motion is assisted by rotations. �ii� Stripes shear easily when they are parallel to the flow and tend to
jam when they are perpendicular to it. Under a sufficiently strong shear rate perpendicular stripes orient in the
flow direction. �iii� Crystals with bubbles yield by fracturing along the bubbles and eventually forming stripes.
We discuss the role of dislocations, emitted by the bubbles, in the yielding process. Finally, we analyze the
effect of thermal fluctuations on the rheological properties.
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I. INTRODUCTION

Examples of spontaneous pattern formation or microsepa-
ration, in conditions close to thermodynamic equilibrium,
can be found in many different experimental systems, both in
two �1–5� and in three dimensions �6–9�. The interest in
these novel phases of matter is very high because the skill in
controlling the architecture of particle aggregates, as well as
the superstructures the latter arrange on, is nowadays a stra-
tegic tool in nanotechnology, in order to engineer new mate-
rials with specific electric, magnetic, optical, and rheological
properties.

The topic of pattern formation is important not only from
a technological point of view, but also from a fundamental
one, influencing many different branches of science: from
vitrification and gelation �10–13� to colloidal systems
�14–17�, from biological membranes �18� to network forma-
tion of tissue cells �19�, to physisorbed layers on solid sur-
faces �20,21�. Even though all of these systems are rather
different at the molecular level, the patterns formed by the
particles can be similar: circular clusters, stripes, and rings of
particles can be easily observed in most bidimensional sys-
tems, while lamellae, spherical clusters, and cylinders occur
in three dimensions. Moreover, the particle aggregates can
often be arranged to form disordered liquidlike configura-
tions, but also crystallinelike superstructures such as grids of
stripes and lamellae, hexagonal lattices of clusters, and
bubbles.

In many cases a simple mechanism to explain the mi-
croseparation is the competition between short-range attrac-
tion, driving cluster aggregation, and long-range repulsion

that hinder their growth. For colloidal systems, the short-
range attraction can be due to depletion forces and van der
Waals forces, while the longer-range repulsion stems from
dipolar forces as in Langmuir monolayers and ferrofluids, or
from partially screened electrostatic forces. For sufficiently
strong long-range repulsion, the standard vapor to liquid
transition is inhibited in favor of microseparation. These sys-
tems have been intensively studied by theoretical �10,22–24�
and numerical approaches �25–29�. The nonequilibrium
rheological properties of microseparated systems are particu-
larly interesting, since the response can be solidlike or liq-
uidlike responses depending on the length and time scales, or
the applied shear stress, which can considerably modify the
patters. For example, experiments show that sheared aqueous
foams act as elastic solids for small deformations and flow
for large applied shear �30,31�. Cluster phases in colloidal
systems become dilatant under flow �32,33� as commonly
observed in granular media. Finally in Ref. �34� the role of
geometrical confinement in the shearing of colloidal systems
is considered.

A useful theoretical framework to interpret the rheological
properties of microseparated systems is that of the jamming
transition �35�. A solidlike or liquidlike response can be con-
sidered as signatures of different phases separated by a tran-
sition controlled by density, temperature, or stress. In the
jammed phase particles and clusters cannot move freely be-
cause of mutual interactions or internal constraints and the
system behaves like a solid. When the temperature is raised
or when the stress exceeds the yield value, particles over-
come the trapping barriers and are able to flow like a liquid.
While jamming phase diagrams can be obtained experimen-
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tally �36�, the precise nature of the transition is still not com-
pletely understood theoretically. The dynamics of a system
near the jamming transition is very intermittent as shown
experimentally in Ref. �37� for a single layer of bubbles
floating on a liquid surface, and in foam simulations
�38–40�. Stain bursts are typical in the plastic deformation of
amorphous solids, as shown in numerical simulations
�41–43�, but also of microscale crystals �44,45� where they
are due to the collective dynamics of dislocations �46,47�.

In this paper we present results of numerical simulations
on the rheology of two-dimensional colloidal microphases in
confined geometries. We consider an ensemble of colloidal
particles interacting by a potential with short-range attraction
and long-range repulsion. As a function of the density and
depending on the constraints imposed by the confinement,
the colloidal system displays a variety of equilibrium mi-
crophases, such as clusters, stripes, or bubbles �48�. Here, we
analyze the behavior of the system when a shear profile is
imposed on the fluid. In particular, we focus on the stability
of the pattern morphology under shear, especially in the in-
termediate high-density region which has not been studied so
far. The rheological behavior of the system is dependent on
the density and on the corresponding microphase. At low
densities, the colloidal particles separate into clusters that are
easily sheared. In this case we observe that shearing is as-
sisted by cluster rotations, a process that is reminiscent of the
shear of granular media �49�. At higher densities the colloi-
dal particles form stripes. When the stripes are oriented par-
allel to the shear direction, the system deforms easily, fol-
lowing the imposed velocity profile. On the other hand, when
the stripes are oriented perpendicular to the shear direction

the system tends to jam. Only under the application of suffi-
ciently high shear rate is the system able to flow. This is done
by a reorientation of the stripes along the shear direction.
Similarly, bubble phases are jammed at low shear rates and
flow at large shear rate. In order to flow, the bubbles tend to
coalesce into stripes which are then easily sheared. The pos-
sibility to control, modify, and stabilize a specific pattern is
particularly appealing for the technology of new materials.
From this point of view, the application of shear stress could
represent a promising strategy to control the structure of mi-
crophases.

This paper is organized as follows. First we describe the
microscopic model of the system and its equilibrium proper-
ties, in the bulk and under confinement, in Sec. II A; then the
rheological quantities as well as the simulations details are
introduced in Sec. II B. Then in Secs. III–V, respectively, we
describe the rheological properties for the cluster, the stripe,
and the bubble phases. In particular, for each case we discuss
the shear rate profile as a function of time, the flow curve
�that is, the stress-strain curve�, and the velocity profile of the
particle aggregate as a function of the distance from the con-
fining walls. In Sec. VI, we discuss the effect of thermal
fluctuations on the rheology. A comparison of the behavior of
the fluid under shear, adopting different pattern morpholo-
gies, is drawn in Sec. VII.

II. THE MODEL

A. Equilibrium

Within the framework of the competing interactions, we
consider a bidimensional fluid, in which the effective poten-
tial for a pair of colloidal particles is

Upp�r� = �A��

r
�n

−
�a�2

Ra
2 exp�−

r

Ra
� +

�r�
2

Rr
2 exp�−

r

Rr
� if r � Rcut,

0 otherwise,
� �1�

r being the interparticle distance and � the particle diameter.
Such a potential is characterized by a soft-core repulsive
term at very short distances, followed by an attractive well
plus a repulsive hump at larger distances �see Fig. 1, upper
panel�. The potential parameters are n=12, A=0.018 for the
short-range repulsion, Ra=1�, �a=1 for the short-range at-
traction, and Rr=2�, �r=1 for the longer-range repulsion.
The short-range repulsion takes into account the impenetra-
bility of the particles, while the remaining part of the poten-
tial mimics the colloid interaction mediated by the surround-
ing fluid. The potential is truncated at Rcut=10�. With the
present choice of the parameters, the minimum of the poten-
tial is located at r	�, while the maximum value of the
longer-range repulsive hump is at r	4�.

The interaction potential of Eq. �1� is similar to those
studied in �10,12,23� for three-dimensional systems. Other
commonly employed potentials are modifications of the

Derjaguin-Landau-Verwey-Overbeek �DLVO� �50,51� poten-
tial describing screened charges. The general features of the
system, such as the pattern morphologies and their rheologi-
cal properties, should not depend on the precise choice of the
potential, provided it displays competing interactions. In case
of two-dimensional fluids our model is the same as the one
discussed in �27,48�, but for the short-range repulsion which
is treated as a hard core in the latter, while it is implemented
as a soft-core potential in the present work. This difference is
not particularly important from the point of view of the gen-
eral features of the phase diagram in bulk, which is schemati-
cally depicted in Fig. 1 �bottom panel�. At sufficiently low
temperature, the present model supports the passage from
droplets to stripes to bubbles as the density increases. The
main difference from the bulk model studied in �27� is
merely an overall shift of the phase diagram toward lower
densities.
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In our model, the fluid is confined along the x direction by
smooth parallel walls, the separation of which is Lx. The
wall-particle interaction is treated as a rather steep potential
of the form

UWP�x� = C exp�− x/�� , �2�

where x is the distance from the wall. The parameters we use
in simulations are �=0.1� and C=U0, U0 being the depth of
the attractive well of the particle-particle potential. As the
range of the wall-particle interaction is very short and the
repulsion very strong, such a potential mimics very well the
effects of neutral hard walls, as we have also verified by
performing some Monte Carlo simulations with a hard-wall
potential too.

Under lateral confinement, if the hard-disk potential is
used for the short-range repulsion as in �48�, a transition
from stripe to clusters occurs as the temperature is lowered.
Such a transition disappears in our case, where the soft-core
potential repulsion is used. The results discussed in �48� can
be obtained if the exponent n of Eq. �1� is increased up to 36.
But, as the aim of this work is to study the effect of shear on
different pattern morphologies, disregarding at first the ther-
mal noise, the change of morphology with temperature is not
of interest at this stage. Moreover, with the present choice of

the potential parameters, we are able to study the stripe and
bubble phases at relatively lower densities, meaning that we
carry out simulations with smaller systems.

In this work we discuss three densities ��2

=0.15,0.3,0.5, corresponding to the cluster, stripe, and
bubble regimes. The clusters and the bubbles are arranged
onto a triangular superlattice, so that the particle configura-
tions are specular. One of the goals of our work, in fact, is to
study how such a hypothetical symmetry between filled and
empty regions in the particle configuration affect the rheol-
ogy of the fluid. The stripes, instead, form a grid of parallel
layers. In each microphase the pattern period is P	11�. The
crystalline order of the superlattice is signaled by the occur-
rence of Bragg peaks in the static structure factor at short
wave vectors Kp that are roughly connected to the period
through the relation P
2� /Kp. The random phase approxi-
mation for this kind of potential has provided predictions in
good agreement with simulations �27�. The maximum size
for the particle aggregates, instead, is dominated by the
width of the attractive well of the particle-particle potential.
Thus, in the present case, we see that cluster diameter is
	4�, similar to the bubble diameter and the stripe width.

The addition of a geometrical constraint, such as the pres-
ence of neutral walls along one of the directions, is a source
of further frustration for the system, mainly if the wall sepa-
ration Lx is not commensurate with the intrinsic bulk period-
icity. For our model, the most peculiar case is represented by
the striped phase, where the alignment of the stripes depends
strongly on the value of Lx. In particular, if Lx=mP+�s �m is
an integer and �s the stripe width�, the stripe orientation is
parallel to the walls, otherwise we observe the formation of a
mixed phase with two parallel stripes next to the walls and
stripes perpendicular to the walls in the center of the slit. In
Fig. 2, typical configurations for different patterns between
walls are plotted. Such configurations are generated through
Monte Carlo simulations in the canonical ensemble �NVT, N
number of particles, V volume, T temperature�. In our simu-
lations N ranges from 1000 to 2000 particles, and the tem-
perature is equal to T=0.4U0.

B. Rheology

To simulate the rheology of the colloidal system, we con-
sider a simple overdamped dynamics for the particles under
the action of an external force field due to the shear. A mov-
ing colloidal particle in a fluid is subject to a drag force. In
particular, for a spherical particle of radius a moving at small
velocity v, the drag force is given by Fd=−	v, with 	
=6�
a where 
 is the fluid viscosity. In this paper, we apply

a weak linear shear profile to the carrier fluid V� �x�
=V0xŷ /Lx and, correspondingly, the colloid particle is sub-

ject to a drag force profile F� d�x�=F0xŷ /Lx, where F0=	V0.
Neglecting inertial and thermal effects, the equation of mo-
tion for the particles is given by:

	
dri

�

dt
= F� d�x� + �

j

f�pp�r� j − r�i� , �3�

where the interparticle forces are computed from the poten-
tial in Eq. �1�,
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FIG. 1. �Color online� Upper panel: Particle-particle effective
potential corresponding to Eq. �1�, in units of the potential well
depth U0= �Upp�r=���. Bottom panel: Schematic phase diagram, in
the density-temperature plane �� ,T� for a bulk bidimensional fluid
subject to competing interactions.
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f�pp�r�� = −
�Upp

�r�
. �4�

In the present study, we do not consider hydrodynamic inter-
actions which can be important for sheared colloidal par-
ticles, although strong confinement is expected screen long-
range effects. Equation �3� is integrated numerically by
means of an adaptive step-size fourth-order Runge-Kutta al-
gorithm. In the present simulations, we fix the time scales,
setting 	=1. Equilibrium configurations obtained from
Monte Carlo simulations at T=0.4U0 are first relaxed at T
=0 in absence of external forces, integrating Eq. �3� for F0
=0. Then we apply an external shear profile to the resulting
configurations and study the system as a function of F0 and
�. Thermal fluctuations can also be introduced in the model

by adding a Gaussian random force 
i
� �t� to Eq. �3�. The

correlations of the random force are given by


i
� �t�
 j

� �t��� = 2	T�ij��t − t�� . �5�

Most of the simulations are performed at T=0 and we dis-
cuss the effect of temperature in Sec. VI.

It will be instructive to compare the internal shear strain
rate with the externally imposed strain rate �̇ext�

1
2

�Vy

�x
=V0 / �2Lx�. The internal strain rate is in general not uniform
and it is necessary to consider its average value defined as

�̇� =
2

Lx
�vy

+� − vy
−�� , �6�

where vy
� is the y component of the particle velocity re-

stricted to the x�0 domain. To obtain a clearer picture of the
internal strain rate, in order to quantify the deviations from a
laminar flow, we measure the particle velocity profile vy�x��
dividing the system into ns strips oriented along y and aver-
aging the y component of the velocities of the particles in
each strip. In particular, we use ns=7 for Lx=76 and ns=5 for
Lx=48,53. Finally, we measure the stress-strain curves of the
system computing the internal shear stress as �see Chap. 4 of
Ref. �52��

�xy = −
1

LxLy
�
ij

�xi − xj�fpp
�y��r�i − r� j� . �7�

In the present simulations, we choose a set of parameters
that allow us to explore the different microphases. We have
not explored entirely the parameter space, although we ex-
pect that the qualitative features of the rheological behavior
do not depend strongly on the parameters and on the way the
system is confined. We have tested that the confinement does
not have a strong effect if the structures are sufficiently wide.
Varying the confinement size Lx at constant density in the
cluster or in the bubble phase does not have a large effect as
long as at least three layers �of clusters, stripes, or bubbles�
are present.
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FIG. 2. Typical configurations obtained via Monte Carlo simulations for different densities and different values of the wall separation Lx,
and T=0.4U0. In particular, we show configurations obtained for �=0.15�2 and Lx=76� �top left�, �=0.5�2 and Lx=76� �top right�, �
=0.3�2 and Lx=48� �bottom left�, and �=0.3�2 and Lx=53� �bottom right�. When the wall separation Lx is not commensurate with the
stripe period, the perpendicular alignment is favored over the parallel one.
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III. CLUSTER PHASE

The rheological properties of the cluster phase are ruled
by the interactions between individual clusters. At low tem-
peratures individual particles inside the clusters do not move,
thus the clusters can be considered as rigid objects which
repel each other. In Fig. 3 �upper panel� we report the aver-
age strain rate �̇ of the system normalized by the external
strain rate. The average strain rate shows characteristic oscil-
lations, which are a peculiarity of the pattern geometry: at
low temperatures the clusters arrange into a regular superlat-
tice and to flow the system must overcome a Peierls-Nabarro
periodic potential. In other words, the oscillations are con-
nected to the sliding past of clusters moving along adjacent
columns. The period of the oscillations diminishes as the
external applied force F0 increases, as the clusters move
faster. Oscillations are also present in the stress-strain curves
as shown in Fig. 3 �bottom panel�. For the time scales and
shear rates that we have studied, we see a slowing down of
the dynamics at low F0 but the system does not jam. We
would expect that at very low F0 jamming would still occur
because a yield stress is needed to overcome effective
Peierls-Nabarro in the superlattice formed by the clusters.

Nevertheless, we could not simulate efficiently a similar re-
gime as the relaxation time becomes too long.

In Fig. 4 �upper panel� we show the velocity profile of the
clusters. The external applied velocity profile is also shown
as a dashed line. At low F0 the velocity profile shows that the
colloid particles are slower with respect to the surrounding
medium. Increasing the external force, instead, the colloid
velocity profile tends to be equal to the external one �dashed
line�. In particular, as F0 increases, the velocity profile tends
to be linear at first in the middle of the box and then nearby
the walls. Hence the flow appears to be laminar in the middle
of the box, while slippage can be present close to the walls.

We see that the cluster lattice is distorted by the shear
deformation and clusters in different columns have to slide
past each other. This process is occasionally helped by rota-
tions around the clusters center of mass. Due to the shear
profile individual clusters are subject to a net torque that can
induce rotations, creating a sort of roller-bearing effect �54�.
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FIG. 3. �Color online� Upper panel: The average strain rate,
divided by the external strain rate �̇ext�V0 / �2Lx�, as a function of
time for different values of F0 for a system with N=1000, �=0.15,
and Lx=76. Bottom panel: The stress-strain curves for the same
cases shown in the upper panel.
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FIG. 4. �Color online� Upper panel: The velocity profiles for
different values of F0, for a system with N=1000, ��2=0.15, and
Lx=76�. Notice the deviation from the externally imposed linear
profile �dashed line� occurring at low shear rates. Data are averaged
over time and over ten realizations. Bottom panel: The torque M
profiles acting on the clusters. In the inset we show a typical con-
figuration of the system.
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Similar rotations are commonly observed in the shear of
granular media and is very important in earthquakes when
the faults are filled by a granular gouge �49�. Similarities
between colloidal systems and granular media have been
pointed out on the basis of rheological measurements in Ref.
�32�. Here, we measure the average torque of the clusters as
a function of the horizontal coordinate of their center of
mass. As can be seen in Fig. 4 �bottom panel�, the torque
displays a characteristic pattern depending on the cluster po-
sition. The clusters nearby the walls rotate less than the rest
because the interaction with the surrounding clusters is lim-
ited on one side; the central clusters, instead, are those for
which the applied velocity is less important as most of the
particles experiment an almost zero drag velocity, so that
their rotation is essentially due to the repulsion with the clus-
ters flowing in the nearby columns. Finally the clusters
whose position is intermediate between the walls and the
center of the simulation box, experiment both the effects due
to the applied drag force and to the cluster-cluster repulsion,
so that the net torque is the highest.

IV. STRIPE PHASES

When we consider the rheology of the stripe phase, we
have to pay attention to the orientation of the stripes with
respect to the shear direction. By slightly tuning Lx we can
obtain configurations in which the stripes are all parallel to
the walls or mixed configurations made up of two stripes
parallel to the walls, while in the middle they arrange per-
pendicularly to the walls.

The most interesting case is that corresponding to the per-
pendicular stripes. In fact, at low forces the system jams,
failing to reorient in the flow direction. Hence, for F0
�0.03, the average strain rate is lower than the external rate,
while for larger F0 their ratio tends to 1 �see Fig. 5, upper
panel�. This behavior is reflected by the stress strain curve
�Fig. 5, bottom panel�, which changes character for F0
�0.03 where the yield stress is followed by a strain-rate
weakening part while, for F0�0.03, the stress reaches a pla-
teau. The peak stress for low F0 scales in a viscous manner
as �p�C�̇ and changes character for F0�0.03 scaling as
�p��Y +C��̇, with C��C �inset of Fig. 5�. We also note
strong fluctuations in the high-strain regime, a behavior that
is often observed in systems with avalanchelike flows as in
�40–43,46,47,53�.

The jamming of the system is clearly visible in the veloc-
ity profiles, where we see that the central part of the system
has zero velocity and only the two boundary parallel stripes
are flowing �Fig. 6, upper panel�. Typical snapshots of the
system, when it is jammed and when it is flowing are plotted
in the bottom panels of Fig. 6 too �54�.

The case of parallel stripes is particularly simple to shear.
The velocity profile rescaled to the applied force is always
linear for each value of F0 we have used. The most interest-
ing aspect is perhaps the behavior of the stress-strain curves
which shows some fluctuations, even if much more smaller
than those observed with perpendicular stripes, and probably
due to the irregularity in the stripe surfaces �see Fig. 7�. The
mean stress is a linear function of the strain rate, indicative

of a simple viscous behavior. An extrapolation at low shear
rate would indicate a very low yield stress of the order of
�Y �10−5.

V. BUBBLE PHASES

Increasing the density, the system develops a bubble
phase in which the bubbles are arranged on a triangular su-
perlattice. From a qualitative point of view, the bubbles un-
der shear become more and more elongated along the direc-
tion of the applied velocity field, until they join to form
stripelike configurations �bottom panel of Fig. 9�. The rheol-
ogy of the bubble phase has some similarities with that of the
perpendicular stripe phase, since both phases jam at low
shear rates. The main difference with respect to the stripe
phase is that, for small external applied strain, the bubble
phase is completely jammed. This is evident from the slow-
ing down of the average strain rate for F0�0.005 �Fig. 8
upper panel� and also from the velocity profile which is com-
pletely flat �Fig. 9 upper panel�. In the case of perpendicular
stripes, instead the jamming involves only the central region,
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FIG. 5. �Color online� Upper panel: The average strain rate as a
function of time for different values of F0 for a system with N
=1000, �=0.3, and Lx=53 plotted in log-linear scale. In the initial
condition the stripes are mostly perpendicular to the flow direction.
Bottom panel: The stress-strain curves. In the inset we report the
maximum stress �p as a function of the strain rate �̇. Notice the
change of behavior as the systems yields at higher rates.
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while the stripes close to the walls flow as well.
When the applied force to the bubble phase is greater than

the peak stress, the system starts to flow and once again
parallel stripes are formed �Fig. 9 bottom panel�, since this
state is the easiest to shear �54�. The peak stress is an in-
creasing function of the strain rate as depicted in the inset of
the bottom part of Fig. 8. Extrapolations at low shear rate
suggest a yield stress of the order �Y =0.02. The shear weak-
ening observed in the stress-strain curve is reminiscent of the
stripe phase, but the yield stress �Y measured in the bubble
phase is about an order of magnitude greater than that ob-
served in the stripe case. This is easily understandable as, in
the bubble phase, the particles are strongly packed together,
so that the motion of the individual particles is hindered by
the surrounding ones. In other words, collective motion of
particles is necessary to ensure a structural change of the
system. We notice as well that the stress-strain curve is char-
acterized by large fluctuations, suggesting again intermittent
and abrupt rearrangements as commonly observed in plastic-
ity �44–47� and in foam rheology �38–40�.

In order to better understand the yielding of the bubble
phase, we perform a Voronoi triangulation of the particle
system and follow the evolution of the topological defects.
Due to the T=0 condition, the system is locally ordered with
a few topological defects around the bubbles. As the system
is sheared, we observe the nucleation and propagation of
dislocations, corresponding to pairs of fivefold and sevenfold
coordinated atoms �54�. In particular, dislocations are some-
times created at the surface of a bubble and then propagate
toward the nearest bubble �see Fig. 10�. Hence, we can see
the shear-induced transformation from bubbles to stripes as a
ductile fracture process: the system first deforms plastically
in the vicinity of the bubbles and eventually a crack propa-
gates, leading to the coalescence of the bubbles into stripes.

It is also interesting to compare the rheology of the bubble
phase with the one of the cluster phase. At equilibrium, the
cluster phase and the bubble are characterized by configura-
tions which are specular. Under shear, however, the clusters
are easily sheared also for very low values of F0, while a
yield stress must be overcome in the bubble phase. More-
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FIG. 6. �Color online� Velocity profiles as a function of time for
different values of F0, for a system with N=1000, �=0.3, and Lx

=53. At low shear rate only the outer �parallel� stripes moves while
the perpendicular stripes are jammed. At higher shear rate the per-
pendicular stripes break and flow. The dashed line represents the
imposed profile. In the bottom panels, particle configurations for
F0=0.1 �middle� at the yield point, when the central stripes break at
F0=0.1 and �bottom� at high strain �=1.
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over, while the clusters rotate and maintain their shape until
F0 is rather large, the bubbles deform almost immediately.
Notwithstanding these large differences in the structure of
the systems, the velocity profiles appear to be very similar
for F0�0.005. In particular the velocity profiles obtained in
the bubble phase are similar to those obtained in the cluster
phase but with smaller external forces. Moreover, the veloc-
ity profiles tend to become linear at first in the middle of the
box simulation and eventually near the walls.

VI. THERMAL FLUCTUATIONS

All the numerical simulations discussed in the previous
section have been performed at T=0. This is not a realistic
condition for most colloidal systems where thermal agitation
is provided by the interactions with fluid molecules. On the
other hand, simulations at T=0 allow us to define the refer-
ence state for the flowing system, providing the limit case to
be observed at low temperature. In order to test the robust-

ness of the rheological properties, we include thermal fluc-
tuations in the model. We can expect that temperature could
be particularly relevant for jammed configurations that can
be destroyed by thermally activated motion, while at high
shear rate thermal fluctuations should not change the rheo-
logical properties.
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FIG. 8. �Color online� Upper panel: The average strain rate as a
function of time for different values of F0 for a system with N
=2000, ��2=0.5, and Lx=76� plotted in log-linear scale. Notice
that at large F0 the strain rate reaches a steady value, while for
F0=0.0001 the strain rate decreases toward zero, indicating a
jammed phase. Bottom panel: The stress-strain curves for different
values of F0. In the inset we show the peak stress as a function of
the applied strain rate �̇.
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FIG. 9. �Color online� Upper panel: The velocity profiles for
different values of the drag force F0 for a system with N=2000,
��2=0.5, and Lx=76�. Data are averaged over time and over ten
realizations. Notice the deviation from the externally imposed linear
profile occurring at lower shear rates. For F0=0.0001, the system is
jammed and the profile is flat. Bottom panels: Subsequent snapshots
for the system at F0=0.1. The snapshots are taken at the yield strain
�middle� and at large strain �bottom�. Notice the crossover from
bubble to stripes at large strains.
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To test this general picture, we consider the case of per-
pendicular stripes at low shear rates ���2=0.3, Lx=53, F0
=0.01�. As discussed in Sec. IV, the system would be
jammed at T=0 with the central perpendicular stripes that are
unable to move. As we increase the temperature beyond T*

�0.15U0, the system undergoes a transition to a flowing
phase, as demonstrated by the changes in the velocity pro-
files shown in Fig. 11�a�. The transition is reflected by a
change in morphology, since the stripes are reoriented in the
flow direction �see the lower panels of Fig. 11�. A signature
of the transition can be seen also in the stress-strain curve
reported in Fig. 12�a�. In particular, the average internal
shear stress �xy is found to decrease rapidly for T�T* �see
the inset of Fig. 12�a��, which is indicative of the reorienta-
tion of the stripes along the shear direction reducing the
stress. Next we consider the case of high shear rate F0=0.1,
where the perpendicular stripes yield already at T=0 and
reorient in the flow direction. At T�0 the rheology is simi-
lar, but the reorientation is assisted by thermal fluctuations.
As a consequence of this the peak stress in the stress-strain
curve decreases with temperatures, indicating that the system
becomes softer �see Fig. 12�b��.

Finally, we investigate the role of temperature in the
bubble phase. Also in this case thermal fluctuations make the

system more ductile. At T=0, the bubbles first deform elas-
tically and eventually break up, forming stripes. When ther-
mal fluctuations are present, dislocation nucleation at the
boundary of the bubbles is enhanced and plastic flow is fa-
vored over brittle fracture. Hence, at sufficiently high tem-
perature, the system is able to flow without deforming the
bubble shape just by creating dislocations �54�.

(b)

(a)

FIG. 10. �Color online� Voronoi triangulations of the configura-
tion of the system configurations at two subsequent time steps for a
system with N=2000, �=0.5, Lx=76, and F0=0.1. The snapshots
are taken around the yield strain ��0.11. Pairs of sevenfold and
fivefold particles form dislocations and are colored, respectively, in
green �light gray� and red �dark gray�. For clarity, we do not show
the topological defects arising at the sample boundary and around
the bubbles. Notice the motion of a dislocation between neighbor-
ing bubbles �indicated by an arrow�.
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FIG. 11. �Color online� Upper panel: The velocity profiles as a
function of temperature for different values of F0, for a system with
N=1000, �=0.3, F0=0.01, and Lx=53. At low temperature we re-
cover the T=0 behavior, with moving outer �parallel� stripes and
jammed perpendicular stripes. At higher temperature the perpen-
dicular stripes break and reform parallel stripes. Bottom panels:
particle configurations at different temperatures: T=0.0125U0

�middle� and 0.25U0 �bottom�.
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VII. DISCUSSION AND CONCLUSIONS

In this paper, we have studied the rheological properties
of a model for colloidal particles with competing interac-
tions. In particular, we concentrated on the morphological
changes induced by shear on the equilibrium microphases. At
sufficiently high densities, the ideal configuration for shear is
the one with stripes parallel to the flow direction. When the
strain rate is not strong enough to transform the existing
microphase into stripes, the system tends to jam. This behav-
ior is observed both in systems with perpendicular stripes
and with bubbles. At lower densities, we have observed a
cluster phase that is easily sheared with the help of cluster
rotations.

To summarize the behavior of the system at different den-
sities, we compare the strain rate obtained for different pat-
tern morphologies. In particular, the strain rate is averaged
over time and normalized with respect to the externally ap-
plied strain, in order to quantify the discrepancy with respect

to a laminar flow. The results, as a function of the applied
external force F0, are plotted in Fig. 13. For each pattern we
see that, for sufficiently high values of F0, the flow is lami-
nar, that is the ratio �̇� / �̇ext tends to unity. For smaller val-
ues of the drag forces, the behavior of the systems is rather
different and strictly dependent on the equilibrium configu-
ration. In particular the cluster phase is easy to shear. In this
case the system is never jammed for the values of F0 we
have used, suggesting that if a yield stress exists, it is very
small. When the system is already arranged on stripes paral-
lel to the walls, the flow is laminar even for the lowest values
of F0. In the case of perpendicular stripes the strain rate
profile is characterized at first by a plateau, which is con-
nected to the coexistence of the flowing stripes nearby the
walls and the jammed central stripes. Then at F0�0.03 the
stripes breaks and tend to rearrange in the flow direction.
Finally in the bubble phase, the system is at first completely
jammed as it demonstrated by the zero value of the ratio
�̇� / �̇ext. It seems, however, that in case of perpendicular
stripes, the partial jamming persists on a wider range of F0
with respect to the bubble phase. Finally we observe that in
the cases in which the system undergoes a structural change,
such as that from the perpendicular alignment of stripes to
the parallel one, or from the melting of the bubble phase to
reform parallel stripes, a peak occurs in the strain-stress
curve. The height of such a peak in the bubble phase is
greater than the corresponding one in the stripe phase by an
order of magnitude. Moreover, strong fluctuations appear in
the stress-strain curve, which might suggest similarities with
systems in which avalanchelike rearrangements occur.

The rheological behavior discussed above has been ob-
tained at T=0. It is thus important to discuss which features
are expected to persist when thermal effects are taken into
account. We can expect that, if the temperature is below the
melting transition, the behavior observed at high shear rates
should be independent of the temperature. At low shear rates,
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FIG. 12. �Color online� Stress-strain curves for different values
of T for a system with N=1000, �=0.3, and Lx=53. The initial state
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the flow direction. �a� Simulations at low shear rate �F0=0.01�.
Thermal fluctuations lead to a reorientation of the stripes for T
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however, close to the jamming transition, thermal fluctua-
tions could help overcome the geometrical constraints lead-
ing to a slow creep deformation. We have tested these ideas
by simulating parallel stripes and bubbles at low shear rates.
We have observed that above a critical temperature the sys-
tem, which would be jammed at T=0, is able to flow. This is
expected from general considerations on jamming phase dia-
grams, that usually depend on stress, density, and tempera-
ture �35�. At high density, in the bubble phase, thermal fluc-

tuations lead to a more ductile deformation of the
microstructure that can flow without deforming the bubbles.
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